A Model-Based Solution to the Offline MARL Coordination Problem

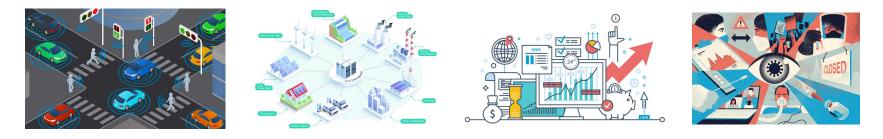
MARL Reading Group 10/24/2023

Paul Barde, Jakob Foerster, Derek Nowrouzezahrai, and Amy Zhang

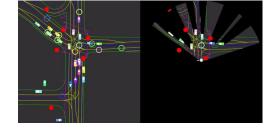
Motivation

Motivation - Offline Multi-Agent

• Many **real-world problems** are multi-agent



Interactions are **costly** and **dangerous**



Simulations are challenging

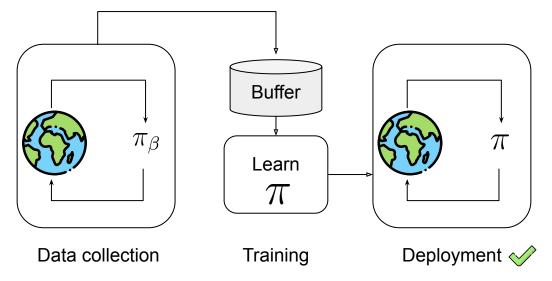
Leverage existing data

Vinitsky, Eugene, et al. "Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world." Advances in Neural Information Processing Systems 35 (2022)

Refresher

Refresher

Offline Reinforcement Learning



Levine, Sergey, et al. "Offline reinforcement learning: Tutorial, review, and perspectives on open problems." arXiv preprint arXiv:2005.01643 (2020).

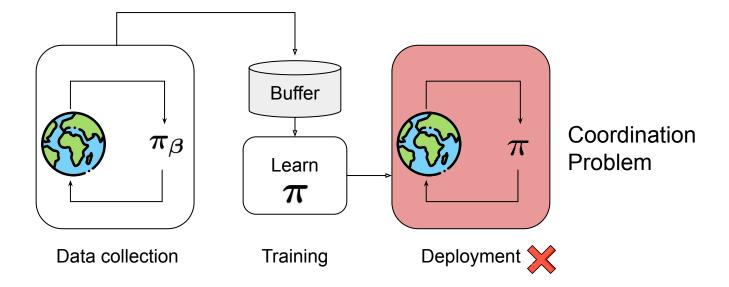
Hypothesis

Offline MARL?

$$\pi_{eta} o \pi_{eta} \triangleq \prod_i \pi^i_{eta}$$

 $\pi o \pi \triangleq \prod_i \pi^i$

A -



Definitions

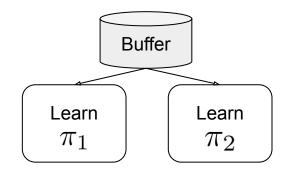
Coordination

Many different notions of coordination:

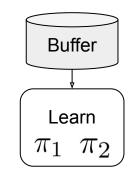
- Zero-Shot Coordination Hu, Hengyuan, et al. ""other-play" for zero-shot coordination." International Conference on Machine Learning. PMLR, 2020.
- Ad-Hoc Teamplay Cui, Brandon, et al. "Adversarial Diversity in Hanabi." The Eleventh International Conference on Learning Representations. 2022.
- Etc.

Offline Coordination

"Agents trained offline (together) perform well together at deployment."



Independent Learners

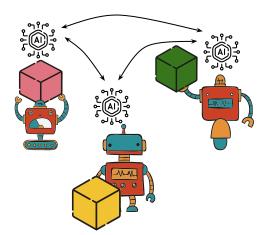


Agents share information during training

Centralized Training Decentralized Execution (CTDE)

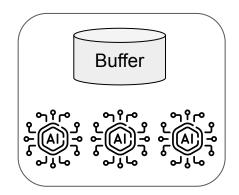
Side Note

CTDE assumption is trivial for offline learning.



Online learning \rightarrow Physical interactions \rightarrow **Embodied** learners

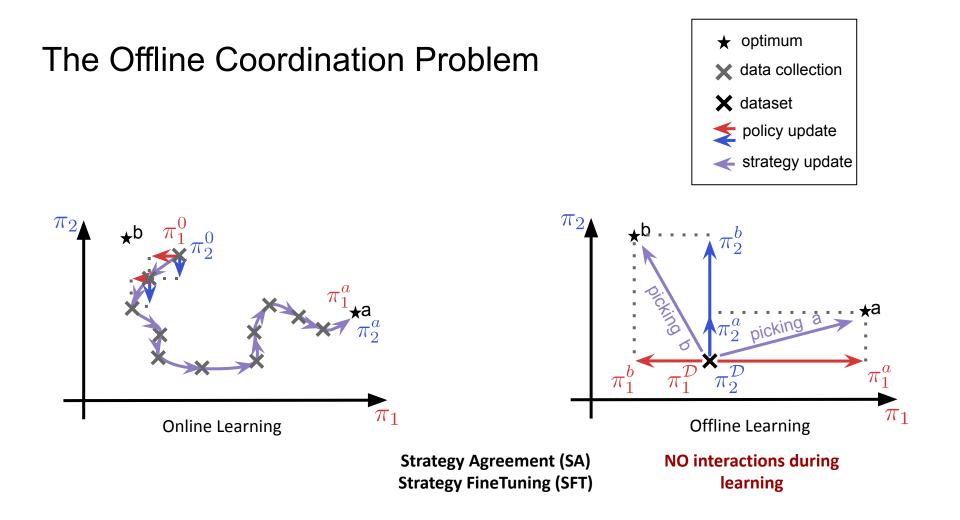
Sharing information is **communication intensive**.



Offline learning \rightarrow No physical interaction \rightarrow **Virtual** learners

Sharing information is trivial.

Offline Coordination Problem



Hypotheses

Hypotheses

(H1) : Current offline MARL methods (model-free) fail at Offline Coordination

- Strategy Agreement (SA)
- Strategy Fine-Tuning (SFT)

(H2) : It comes from the absence of **agent-to-agent interactions** during learning \rightarrow **Model-Based** approaches can fix this.

Experiments

The Baselines

- Implicit Q-learning (IQL)
 - \circ Single-agent \rightarrow centralized execution by controlling joint action
 - \rightarrow Upper bound on Strategy-Agreement since centralized execution bypasses it.
- CTDE Learners
 - MA-IQL: CTDE extension to IQL
 - MA-TD3+BC: CTDE Twin Delayed DDPG + Behavioral Cloning regularization

• Independent Learners

- ITD3+BC : Independent Twin Delayed DDPG + Behavioral Cloning regularization
- ICQL : ITD3 + Regularization on Q-values (favors dataset transitions)
- OMAR : ICQL + zero-order optimization (random shooting)
- IBC: (Vanilla) Independent Behavior Cloning (Imitation Learning)

Model-free

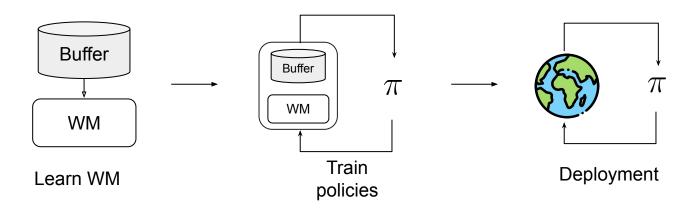
Our Method - MOMA-PPO

Model-Based Offline Multi-Agent Proximal Policy Optimization (MOMA-PPO)

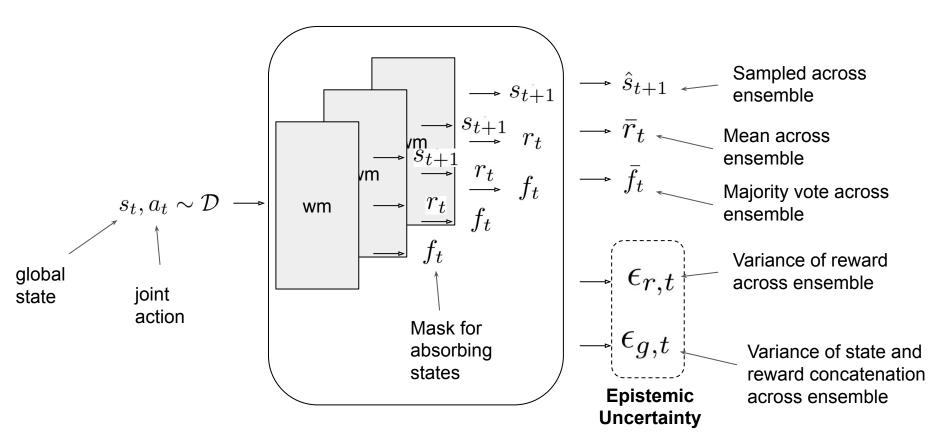
- Dyna-like approach: use model to generate training data
- CTDE
- Based on Multi-Agent PPO

Idea:

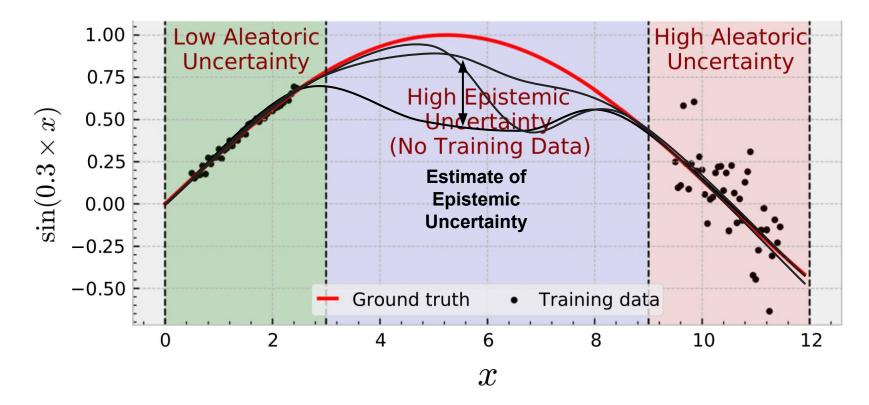
- 1. Learn a centralized world-model on the dataset
- 2. Use it to generate **synthetic rollouts** train PPO policies



MOMA-PPO - World Model Ensemble



Refresher - Epistemic Uncertainty



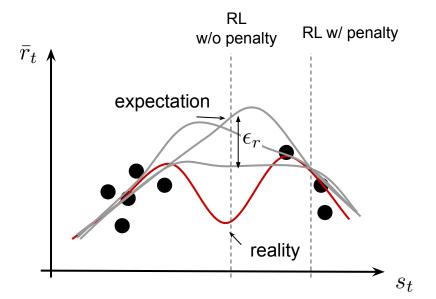
Tuna, Omer Faruk, Ferhat Ozgur Catak, and M. Taner Eskil. "Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples." Multimedia Tools and Applications 81.8 (2022): 11479-11500.

MOMA-PPO - World-Model use

Prevent RL algorithm to exploit model's errors

• Epistemic uncertainty penalized reward

$$\tilde{r}_t = \bar{r}_t - \lambda_r \epsilon_r - \lambda_g \epsilon_g$$

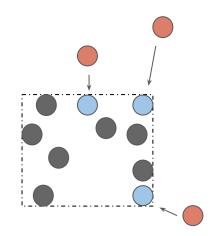


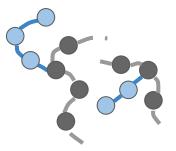
MOMA-PPO - World-Model use

Avoid "unfeasible" data

 \rightarrow Stay close to dataset

- In terms of values \rightarrow bounding box clipping
- In terms of rollouts
 - Generate from dataset
 - Generate for few steps
 - Early termination (based on WM uncertainty)

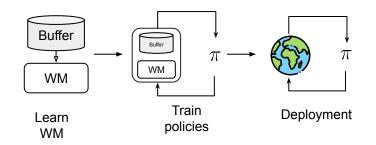




Our Method - MOMA-PPO

In a nutshell

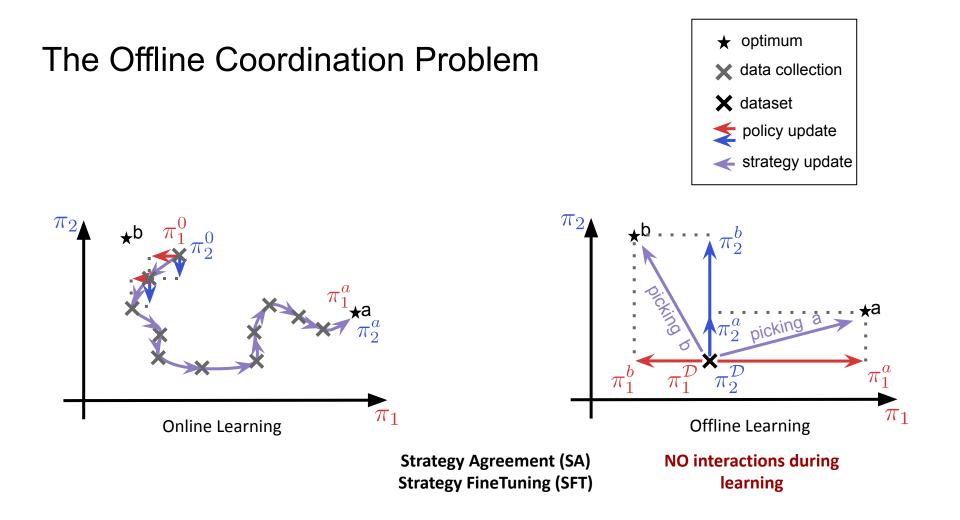
- 1. Learn a centralized world-model (WM) on the dataset
 - World-model ensemble to compute epistemic uncertainty
- 2. Use it to train PPO policies by generating rollouts
 - Sample state in dataset
 - Query current policies for actions
 - Generate transition with WM
 - Clip values to dataset
 - Terminate rollout if its length or uncertainty is above thresholds
 - Penalize reward for uncertainty



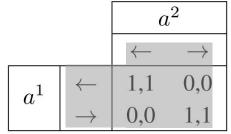
Recap - The Methods

- Model-Free
 - Implicit Q-learning (IQL): single-agent \rightarrow centralized execution
 - **CTDE**-learners:
 - MA-IQL
 - MA-TD3+BC
 - Independent-learners
 - IBC
 - ITD3+BC
 - ICQL
 - OMAR

- Model-Based
 - MOMA-PPO



- Coordination Game (strategy agreement)
 - Three datasets:
 - Favorable: agents go right most of the time
 - Neutral: both act at random
 - Unfavorable: agents go in opposite direction most of the time (agent 1 goes right, agent 2 left)



• All datasets have full coverage so **centralized critic** can learn

 $Q(\rightarrow,\rightarrow)=Q(\leftarrow,\leftarrow)=1$ while $Q(\rightarrow,\leftarrow)=Q(\leftarrow,\rightarrow)=0$

Yet, decentralized actors still cannot figure out whether to go left or right.

Centralized actors and strategy agreement

$$\underbrace{Q(\rightarrow,\rightarrow) = Q(\leftarrow,\leftarrow) = 1}_{\pi(\rightarrow,\rightarrow) = \pi(\leftarrow,\leftarrow) = 0.5} \text{ while } \underbrace{Q(\rightarrow,\leftarrow) = Q(\leftarrow,\rightarrow) = 0}_{\pi(\rightarrow,\leftarrow) = \pi(\leftarrow,\rightarrow) = 0.5}$$

Centralized actor controls joint action so always coordinated

Decentralized actors and strategy agreement

$$Q(\rightarrow, \rightarrow) = Q(\leftarrow, \leftarrow) = 1 \text{ while } Q(\rightarrow, \leftarrow) = Q(\leftarrow, \rightarrow) = 0$$

$$\pi(\rightarrow, \rightarrow) = \pi(\leftarrow, \leftarrow) = 0.5$$

$$\pi(\rightarrow, \leftarrow) = \pi(\leftarrow, \rightarrow) = 0.$$

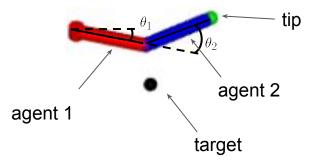
$$\pi(\rightarrow, \leftarrow) = \pi(\leftarrow, \rightarrow) = 0.$$

$$\pi_1(\rightarrow)\pi_2(\leftarrow) = \pi_1(\leftarrow)\pi_2(\leftarrow) = \pi_1(\leftarrow)\pi_2(\rightarrow) = 0.$$

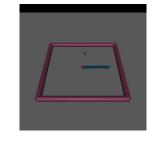
$$\pi_1(\rightarrow) = \pi_1(\leftarrow) = \pi_2(\leftarrow) = \pi_2(\rightarrow) = 0.5$$

Decentralized actors need to break symmetry \rightarrow coordination occurs by chance (half of the time)

Two Agent reacher (strategy agreement) \bullet



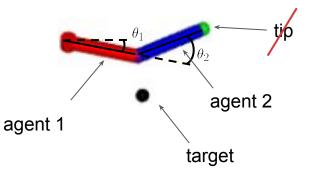
Dataset is a mix of expert lacksquaredemonstrations



Clockwise experts

Counter-clockwise experts

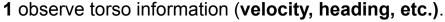
• Two Agent reacher (strategy agreement)

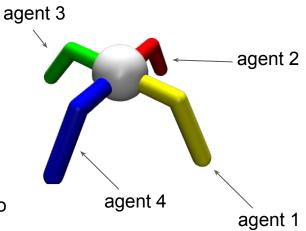


Agents must derive tip position from joint angles

- Partial observability
 - Full Observability (FO): every agent sees everything
 - Partial Observability (PO)
 - Independent: agent sees target and joint it controls
 - Leader-only: both agents observe the two joints, but only the red agent observes the target's position

- Four Agent Ant (strategy fine-tuning)
 - Agent decomposition as in MAMuJoCo
- Datasets from D4RL
 - Random : randomly initialized policy
 - Medium : policy at mid-performance training
 - Full-replay : full experience replay buffer used to train to expert performance
 - Expert : expert demonstrations
- Partial observability
 - FO: all the agents observe the full robot
 - PO: each agent observes the limb it controls, **only agent**





Results

		<u></u>	×.			
	IQL	MAIQL	IBC	MOMA-PPO		
Coordination Game	fav.	1. ± 0.	1. \pm 0. 1. \pm 0.		$1.\pm 0.$	
	neutral	1. ± 0.	0.9 ± 0.1	0.55 ± 0.11	$1.\pm 0.$	
	unfav.	1. ± 0.	$0.\pm 0.$	$0.\pm 0.$	$1.\pm 0.$	

Two-Agent Reacher

Algorithms Tasks		model-based (ours)							
		centralized	СТ	TDE		independe	CTDE		
Tasks		IQL	MAIQL	MATD3+BC	IBC	ITD3+BC	ICQL	IOMAR	мома-рро 🗸
FO	all-observant	$\textbf{1.07} \pm \textbf{0.01}$	0.96 ± 0.05	1.04 ± 0.01	1.02 ± 0.01	0.78 ± 0.00	0.48 ± 0.06	0.73 ± 0.01	$\boldsymbol{1.07 \pm 0.01}$
PO	independent		0.92 ± 0.04	0.59 ± 0.03	0.76 ± 0.04	0.30 ± 0.11	0.46 ± 0.04	0.45 ± 0.02	0.95 ± 0.06
10	leader-only		0.80 ± 0.05	0.73 ± 0.02	0.84 ± 0.02	0.48 ± 0.04	0.31 ± 0.05	0.39 ± 0.02	$\textbf{1.00} \pm \textbf{0.01}$

		۸۱		model-based (ours)						
	Tasks	Algorithms	centralized	CTDE		independent learners				CTDE
	Tasks		IQL	MAIQL	MAIQL-ft	IBC	ITD3+BC	ICQL	IOMAR	МОМА-РРО
	FO	ant-random	0.12 ± 0.00	0.28 ± 0.01	0.28 ± 0.03	0.31 ± 0.00	0.22 ± 0.02	0.08 ± 0.00	0.08 ± 0.00	0.52 ± 0.07
Four-Agent		ant-medium	0.97 ± 0.02	0.85 ± 0.02	0.81 ± 0.02	0.84 ± 0.01	1.04 ± 0.00	0.88 ± 0.12	1.10 ± 0.03	$\textbf{1.29} \pm \textbf{0.06}$
Ant		ant-full-replay	1.22 ± 0.02	0.77 ± 0.21	0.95 ± 0.13	1.20 ± 0.01	1.33 ± 0.01	1.21 ± 0.02	1.30 ± 0.00	$\textbf{1.42} \pm \textbf{0.07}$
Ant		ant-expert	1.26 ± 0.01	1.24 ± 0.00	1.06 ± 0.07	1.24 ± 0.00	1.25 ± 0.02	0.73 ± 0.15	1.16 ± 0.01	$\textbf{1.49} \pm \textbf{0.01}$
	РО	ant-random		0.31 ± 0.00	0.34 ± 0.04	0.31 ± 0.00	0.31 ± 0.00	0.17 ± 0.02	0.21 ± 0.02	0.42 ± 0.05
		ant-medium		0.14 ± 0.02	0.11 ± 0.01	0.17 ± 0.01	0.22 ± 0.05	0.09 ± 0.02	0.06 ± 0.01	$\textbf{0.54} \pm \textbf{0.19}$
		ant-full-replay		0.18 ± 0.02	-0.07 ± 0.10	0.21 ± 0.02	0.20 ± 0.01	0.09 ± 0.01	0.11 ± 0.02	$\boldsymbol{0.46 \pm 0.10}$
		ant-expert		-0.16 ± 0.01	-0.23 ± 0.02	0.05 ± 0.04	0.16 ± 0.00	0.11 ± 0.03	0.10 ± 0.01	$\textbf{0.18} \pm \textbf{0.00}$

Results – Offline coordination

- MA Model-Free methods (Fail)
 - Fail at Strategy Agreement (SA)
 - Fail at Strategy Fine-Tuning (SFT)
- Fully Centralized Model-Free (Mixed)
 - Bypasses SA
 - Fails at SFT!
- Model-Based method (MOMA-PPO) (Success)
 - Solves both SA and SFT

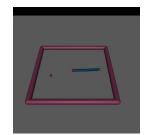
• Model-Based > Model-Free (even fully centralized!)

Illustrative Rollouts

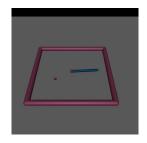
• Partially Observable Two Agent Reacher (strategy agreement)

Clockwise experts

Counter-clockwise experts



ITD3+BC failure



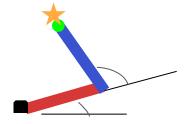
MOMA-PPO success

Agents picked different strategies

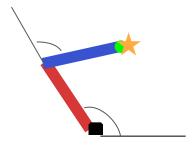
Both clockwise and counter-clockwise → Improves on experts

Illustrative Rollouts

Better than expert?



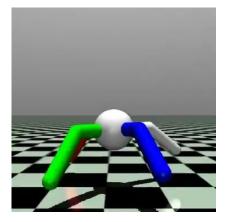
Counter-clockwise Optimal



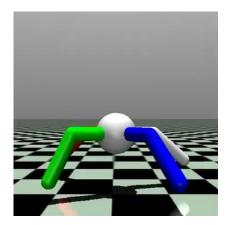
Clockwise Suboptimal expert

Illustrative Rollouts

• Partially observable Four Agent Ant (strategy fine-tuning)



ITD3+BC: team failed to fine-tune and runs in circles



MOMA-PPO: white agent "steers" the team

Insights

- Strategy Fine-Tunining occurs when you need to adapt from the dataset
 - Suboptimal datasets
 - Partial observability
 - "Steering" behavior in partial observable ant
 - Otherwise, simple imitation is enough
 - BC performance is close to model-free performance
- Partial observability induces more **state ambiguity**
 - More difficult to break symmetry / course correct
- MOMA-PPO performance related to **dataset's coverage/diversity** rather than "**expertness**"
 - \circ Partial Observable Ant \rightarrow random dataset > expert dataset
 - Best dataset is most likely the biggest one possible
 - Mix all the datasets you have (random, medium, expert, replay, etc.)
 - Train MOMA-PPO on it
 - Compare to model-free methods

Dataset Agents (data collectors)

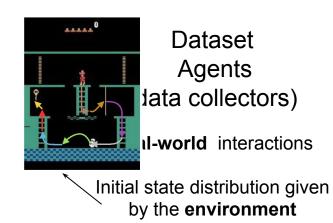
MOMA-PPO agents

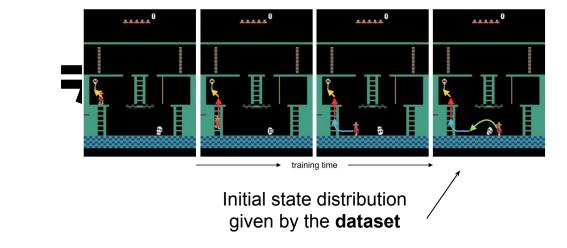
Real-world interactions

Initial state distribution given by the **environment**

Generated interactions

Initial state distribution given by the **dataset**





Salimans, Tim, and Richard Chen. "Learning montezuma's revenge from a single demonstration." arXiv preprint arXiv:1812.03381 (2018).

Dataset Agents (data collectors)

MOMA-PPO agents

Real-world interactions

Initial state distribution given by the **environment**

Reward defined by the **task**

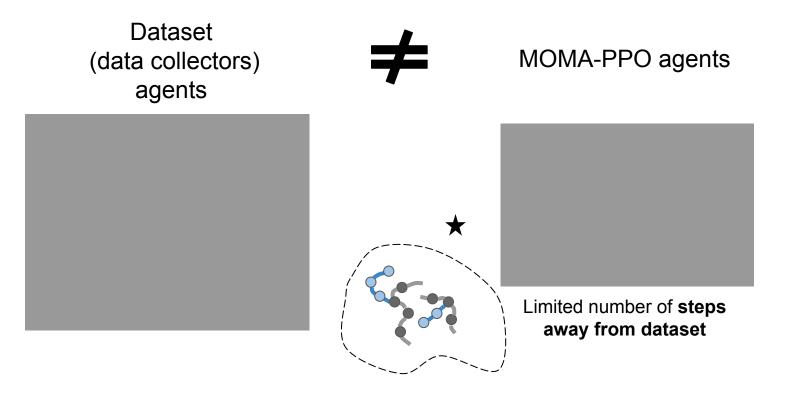
Unconstrained exploration

Generated interactions

Initial state distribution given by the **dataset**

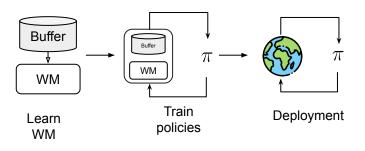
Uncertainty averse reward

Limited number of steps away from dataset

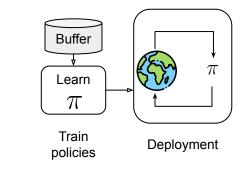


- Why PPO?
 - Online RL (PPO) > Offline RL (IQL, CQL)?
 - \rightarrow different learning paradigm

MOMA:

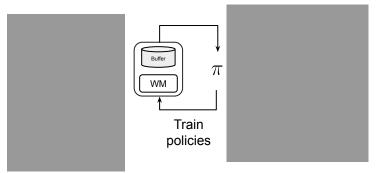


Offline Model-Free:

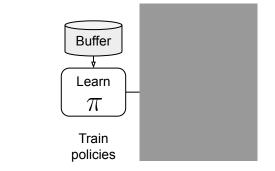


- Why PPO?
 - Online RL (PPO) > Offline RL (IQL, CQL)?
 - \rightarrow different learning paradigm

MOMA:

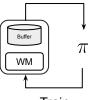


Interactively collected non-stationary data → **Online RL** Offline Model-Free:



"Supervized" on static dataset

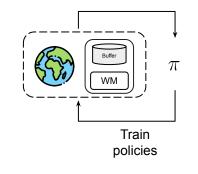
- Why PPO?
 - On-policy (PPO) > Off-policy (SAC, TD3)?
 - \rightarrow Model-based serves a different purpose



Train policies

Adapt from dataset Coordinate multiple agents \rightarrow Robust and effective

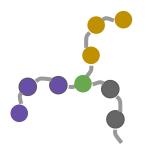
Online Dyna:

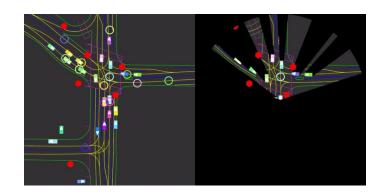


Sample efficiency wrt. Real environment → Off-policy

Limitations

- MOMA-PPO takes longer to train (3-4 times wall-clock time) than the baselines
 - Need to generate rollouts through the world-model vs. supervised on fixed dataset
- MOMA-PPO performance still depends on the **wold-model's accuracy** and **generalization**
 - Strongly related to the **dataset's coverage** (but not necessarily dataset performance)
 - World-model learning can be challenging
 - Stochastic multi-modal environments
 - Complex dynamics (simulate road-users that we do not control)





Future work

- Analyze more in-depth **model-free failure cases** (potential model-free solutions?)
- BC efficiency begs the question of how much of other methods' complexity is mandated in practice
- Reduce training time by using **synthetic interactions for coordination only** while mainly learning on dataset?
 - TD3 on dataset + (some) synthetic interactions
 - How to mix?
 - Monitor?
 - Avoid exploitation/extrapolation error while still improving on dataset?
 - Many trade-offs to investigate...
- Move to more complex tasks and environments
 - Stochastic
 - Observation/action space
 - Complex dynamics
 - Real world data ...

Summary

- Offline MARL is an attractive solution to many real world problems.
- However, extending **current model-free offline RL** methods to the multi-agent setting **fail** at offline coordination problems.
- Our **model-based** approach solves this by restoring **agent-to-agent interactions** during learning.
 - Agents interact through the world-model

Jakob Foerster

Derek Nowrouzezahrai

Amy Zhang

References and images

IMAGES:

- https://discover.rbcroyalbank.com/wp-content/uploads/banner-small-self-driving-cars_402x.jpg
- https://codibly.com/news-insights/what-are-smart-grids/
- https://www.vectorstock.com/royalty-free-vector/financial-stock-market-capital-markets-trading-vector-22947946
- https://www.newyorker.com/podcast/the-new-yorker-radio-hour/the-pandemic-at-three-who-got-it-right
- <u>https://pngtree.com/so/road-accident</u>

REFERENCES

- Vinitsky, Eugene, et al. "Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world." Advances in Neural Information Processing Systems 35 (2022)
- Levine, Sergey, et al. "Offline reinforcement learning: Tutorial, review, and perspectives on open problems." *arXiv preprint arXiv:2005.01643* (2020).
- Hu, Hengyuan, et al. ""other-play" for zero-shot coordination." *International Conference on Machine Learning*. PMLR, 2020.
- Cui, Brandon, et al. "Adversarial Diversity in Hanabi." *The Eleventh International Conference on Learning Representations*. 2022.
- Tuna, Omer Faruk, Ferhat Ozgur Catak, and M. Taner Eskil. "Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples." *Multimedia Tools and Applications* 81.8 (2022): 11479-11500.
- Yu, Chao, et al. "The surprising effectiveness of ppo in cooperative multi-agent games." *Advances in Neural Information Processing Systems* 35 (2022): 24611-24624.

Thank you!